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Arctic Atmosphere and Global Near-Surface Temperature

Using JRA55 (1958 to 1979 6 hourly data with P ), | onna etal, 2017
60 day moving average)

Examine teleconnections between
Horizontally averaged (>72N) geopotential
height (37 levels) and specific humidity (27 Ivl<)
And 850mb temperature averaged over distin
geographic regions i
Using ML-based predictive models
e.g., L'Heureux et al. 2017 find strong
predictability related ENSO-AQ relation in the | == ’
North American Multimodel Ensemble '

Indian 1



We consider three ML-based prediction systems

Notionally partition Arctic warming into local and remote components
G = A+ E (Global = Arctic + Extra-Arctic)

Global evolution: % —m F(G) (global autonomous)

A
Arctic-only evolution: Cfi_t = f(A) (local autonomous)

Arctic evolution with specified Extra-Arctic forcing:

ad _ f(A) |- g(E(t)) (local non-autonomous)



Arctic Warming: Local vs. Remote Drivers

e |[f Arctic warming is dominated by local processes and feedbacks Arctic-local

system % — f(A) would be most skilful

e If remote processes and feedbacks were important as well:
skill(local) < skill(global) < skill(local w/ specified external forcing)

S (% _ f(A)) <8 (% = F(G)) <S8 (% = f(4) + Q(E(t)))



With ML-models, both skill measures (RMSE and ACC)
show a role for remote forcing of Arctic warming
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Normalized RMSE
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Typical ML is data hungry: we are pursuing ML
techniques for performance with limited data
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Summary and Conclusions

We are developing and applying new ML based techniques to investigate the
issue of local vs. remote drivers of Arctic warming in the context of a small
effort under the HILAT-RASM project

A limited preliminary study suggests a significant role for remote drivers
Results from linear methods are confounding and need to be
verified/debugged (didn’t discuss in talk)

This area is fertile for collaborations across the various RGMA
projects/groups. Looking forward to them! Contact me at balu@lanl.gov



Comparison to State of the Art: LIM, FDT, CRF, DMD, Koopman Op.

Left: long (12 year) training; Right: short (1 year) training (caveat: in figure on right, frequent blow-ups have been eliminated)
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LIM results argue for the dominance of local processes and feedbacks in determining Arctic warming (buggy?)

(LIM: Linear Inverse Modeling; FDT: Fluctuation Dissipation Theorem; CRF: Climate Response Function; DMD: Dynamic Mode Decomposition)



